Publications

Google Scholar Citation Index

All Publications  Artificial Metalloenzymes  Biocatalysis  Chemical Biology  Organometallics  Other

*corresponding author #undergraduate researcher


76
Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases

Jiang, Y.; Kim, A.; Olive, C.; Lewis, J. C.* Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases. Angew. Chem. Int. Ed., accepted

Original preprint available on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


75
Non-Native Intramolecular Radical Cyclization Catalyzed by a B12-Dependent Enzyme

Li, J.; Kumar, A.; Lewis, J. C.* Non-Native Intramolecular Radical Cyclization Catalyzed by a B12-Dependent Enzyme. Angew. Chem. Int. Ed., 2023, e202312893.

Original preprint available on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


74
Non-Native Site-Selective Enzyme Catalysis

Mondal, D.; Snodgrass, H. M.; Gomez, C. A.; Lewis, J. C.* Chem. Rev. 2023, 123, 10381-10431.

See the original preprint available on ChemRxiv.

TOC Image

Category: Artificial Metalloenzymes | Biocatalysis

Publication Link


73
Iridium(III) Polypyridine Artificial Metalloenzymes with Tunable Photophysical Properties: a New Platform for Visible Light Photocatalysis in Aqueous Solution

Liu, B.; Zubi, Y. S.; Lewis, J. C.* Dalton, 2023, 52, 5034-5038.

See the original preprint on ChemRxiv.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


72
Asymmetric Catalysis by Flavin Dependent Halogenases

Jiang, Y.; Lewis, J. C.* Chirality, 2023, 1-9.

See the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


71
First and Second Sphere Interactions Accelerate Non-Native N-Alkylation Catalysis by the Thermostable, Methanol-Tolerant B12-Dependent Enzyme MtaC.

Kumar, A.; Yang, X., Li, J.; Lewis, J. C.* ChemComm, 2023, 59, 4798-4801.

See the original preprint on ChemRxiv.

TOC Image

Category: Biocatalysis | Organometallics

Publication Link


70
Directed Evolution of a Fe(II)- and alpha-Ketoglutarate-Dependent Dioxygenase for Site-Selective Azidation of Unactivated Aliphatic C-H Bonds

Gomez, C.; Mondal, D.; Du, Q.; Chan, N.; Lewis, J. C.* Angew. Chem. Int. Ed. 2023,  e202301370.

See the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


69
The Single Component Flavin Reductase/Flavin Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins

Jiang, Y.; Snodgrass, H. M.; Zubi, Y. S.; Roof, C. V.; Guan, Y.; Mondal, D.; Honeycutt, N. H.#; Lee, J.; Lewis, R. D.; Martinez, C. A.; Lewis, J. C.* Angew. Chem. Int. Ed. 2022, 61, e202214610.

See the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


68
Expanding the Reactivity of Flavin Dependent Halogenases Toward Olefins via Enantioselective Intramolecular Haloetherification and Chemoenzymatic Oxidative Rearrangements

Jiang, Y.; Mondal, D.; Lewis, J. C.* ACS Catalysis, 202212, 13501-13505. Check out the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


67
Non-native Anionic Ligand Binding and Reactivity in Engineered Variants of the Fe(II)- and α-Ketoglutarate-Dependent Oxygenase, SadA

Chan, N. H.; Gomez, C.; Vennelakanti, V.; Du, Q.; Kulik, H. J.*; Lewis, J. C.* Inorg. Chem. 202261, 14477-14485. Check out the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


66
Cobalamin-Mediated Electrocatalytic Reduction of Ethyl Chloroacetate in Dimethylformamide

Gerroll, B. H. R.; Lewis, J. C.; Baker, L. A.* J. Electrochem. Soc. 2022, 169, 055501.

TOC Image

Category: Organometallics

Publication Link


65
Directed Evolution of Flavin-Dependent Halogenases for Atroposelective Halogenation of 3-Aryl-4(3H)-quinazolinones via Kinetic or Dynamic Kinetic Resolution

Snodgrass, H. M.; Mondal, D.; Lewis, J. C.* J. Am. Chem. Soc. 2022144, 16676-16682.. See the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


64
Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity

Andorfer, M. C.; Evans, D.; Yang, S. He, C. Q.; Girlich, A. M.#; Vergara-Coll, J.#; Sukumar, N.; Houk, K. N.*; Lewis, J. C.* Chem. Catal. 2022, 2, 2658-2674. Check out the original manuscript on ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


63
Metal-Responsive Regulation of Enzyme Catalysis Using Genetically Encoded Chemical Switches

Zubi, Y. S.; Seki, K.; Li, Y.; Hunt, A.; Liu, B.; Roux, B.*, Jewett, M. C.*, Lewis, J. C.* Nat. Commun. 2022, 13, 1864. Preprint available on ChemRxiv. See peer review here.

TOC Image

Category: Artificial Metalloenzymes | Biocatalysis | Chemical Biology

Publication Link


62
Controlling the Optical and Catalytic Properties of Artificial Metalloenzyme Photocatalysts Using Chemogenetic Engineering

Zubi, Y. S.; Liu, B.; Gu, Y.; Sahoo, D.; Lewis, J. C.* Chem. Sci. 2022, 13, 1459-1468. Preprint available on ChemRxiv.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


61
Controlling Non-Native B12 Reactivity and Catalysis in the Transcription Factor CarH

Yang, X.; Gerroll, B. H. R.; Jiang, Y.; Kumar, A.; Zubi, Y. S.; Baker, L. A.; Lewis, J. C.* ACS Catal. 2022, 12, 935-942. Preprint available on ChemRxiv.

TOC Image

Category: Biocatalysis | Organometallics

Publication Link


60
Phage-Assisted Continuous Evolution and Selection of Enzymes for Chemical Synthesis

Jones, K. A.; Snodgrass, H. M.; Belsare, K.; Dickinson, B. C.*, Lewis, J. C.* ACS Central Science, 2021, 7, 1581-1590. Preprint available on ChemRxiv.

TOC Image

Category: Biocatalysis | Chemical Biology

Publication Link


59
Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions

Upp, D. M.; Huang, R; Li, Y.; Bultman, M. J.#; Roux, B.*, Lewis, J. C.* Angew. Chem. Int. Ed. 2021, 60, 2-7. You can read the original manuscript on ChemRxiv.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


58
Flavin-Dependent Halogenases Catalyze Enantioselective Olefin Halocyclization.

Dibyendu Mondal, Brian F. Fisher, Yuhua Jiang, Jared C. Lewis*. Flavin-Dependent Halogenases Catalyze Enantioselective Olefin Halocyclization. Nat. Commun. 2021, 3268. You can read the original manuscript at ChemRxiv. See peer review discussion here.

TOC Image

Category: Biocatalysis

Publication Link


57
Insight into the Scope and Mechanism for Transmetallation of Hydrocarbyl Ligands on Complexes Relevant to C-H Activation

Natalie Chan, Joseph J. Gair, Michael Roy#, Yehao Qiu#, Duo-Sheng Wang, Landon J. Durak, Liwei Chen#, Alexander S. Filatov, Jared C. Lewis*. Insight into the Scope and Mechanism for Transmetallation of Hydrocarbyl Ligands on Complexes Relevant to C-H Activation. Organometallics, 2021, 40, 6-10. You can read the originally submitted manuscript at ChemRxiv.

TOC Image

Category: Organometallics

Publication Link


56
Catalytic Behavior of Mono-N-Protected Amino Acid Ligands in Ligand-Accelerated C–H Activation by Palladium(II)

Salazar, C. A.; Gair, J. J.; Flesch, K. N.; Guzei, I. A.; Lewis, J. C.; Stahl, S. S.* Catalytic Behavior of Mono-N-Protected Amino-Acid Ligands in Ligand-Accelerated C-H Activation by Palladium(II). Angew. Chem. Int. Ed. 2020, 59, 10873-10877.

TOC Image

Category: Organometallics

Publication Link


55
A High-throughput Method for Directed Evolution of NAD(P)+ dependent Dehydrogenases for the Reduction of Biomimetic Nicotinamide Analogues

Huang, R.; Chen, H.; Upp, D. M.; Lewis, J. C.; Zhang, Y.-H. P. J.* A High-throughput Method for Directed Evolution of NAD(P)+-dependent Dehydrogenases for the Reduction of Biomimetic Nicotinamide Analogues. ACS Catalysis, 2019, 9, 11709.

TOC Image

Category: Biocatalysis

Publication Link


54
Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid Accelerated Enantioselective C-H Functionalization

Gair, J. J.; Haines, B. E.; Filatov, A. S.; Musaev, D. G.*; Lewis, J. C.* Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid Accelerated Enantioselective C-H Functionalization. ACS Catalysis, 2019, 9, 11386-11397. This project originated from efforts to incorporate a Pd-MPAA catalyst into a protein scaffold to generate an ArM. Establishing the identity of such a catalyst proved far more difficult than we expected! The original manuscript, available at ChemRxiv, notes this origin story, which had to be removed during peer review.

TOC Image

Category: Organometallics

Publication Link


53
Site-Selective C-H Halogenation using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling

Fisher, B. F.; Snodgrass, H. M.; Jones, K. A.; Andorfer, M. C.; Lewis, J. C.* Site-Selective C-H Halogenation using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Central Science, 2019, 11, 1184. See the original manuscript at ChemRxiv.

TOC Image

Category: Biocatalysis

Publication Link


52
Development of a Split Esterase for Protein–Protein Interaction-Dependent Small-Molecule Activation

Jones, K. A.; Kentala, K.; Beck, M. W.; An, W.; Lippert, A. R.; Lewis, J. C.; Dickinson, B. C.* Development of a Split Esterase for Protein-Protein Interaction-Dependent Small-Molecule Activation. ACS Central Science, 2019, ASAP.

See the original manuscript at ChemRxiv.

 

TOC Image

Category: Chemical Biology

Publication Link


51
Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes to Enable Protein Control of Transition Metal Catalysis

Lewis, J. C.* Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes to Enable Protein Control of Transition Metal Catalysis. Accounts of Chemical Research. 2019, 52, 576-584.

This manuscript was an invited contribution to a special issue of Accounts of Chemical Research on artificial metalloenzyme catalysis and non-native reactions catalyzed by natural metalloenzymes. Check out the rest of the excellent articles here!

TOC Image

Category: Artificial Metalloenzymes

Publication Link


50
Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer During C-H Activation by a Rhodium-Pincer Complex

Gair, J. J.; Qiu, Y.#; Khade, R. L.; Chan, N.; Filatov, A. S.; Zhang, Y.*; Lewis, J. C.* A Heterobimetallic Isolobal Transition State Analogue for Proton Transfer During C-H Activation by a Rh-Pincer Complex. Organometallics, 2019, 38, 1407.

TOC Image

Category: Organometallics

Publication Link


49
Pyrococcus furiosus Prolyl Oligopeptidase: A Dynamic Supramolecular Host for Peptidase and Dirhodium Catalysis

Ellis-Guardiola, K.; Rui, H.; Beckner, R.;# Srivastava, P.; Sukumar, N.*; Roux, B.*; Lewis, J. C.* Crystal Structure and Conformational Dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemistry2019, 58, 1616.

The studies detailed in this manuscript were originally reported on ChemRxiv. The ChemRxiv manuscript detailed how the large scale conformational dynamics outlined in the Biochemistry paper can be used to rationalize the specificity of dirhodium ArMs created from the POP scaffold for cyclopropanation over water O-H insertion. Unfortunately, we were unable to convince reviewers of the latter point, but you can still read about it on ChemRxiv here!

TOC Image

Category: Artificial Metalloenzymes | Biocatalysis

Publication Link


48
Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation

Payne, J. T.; Butkovich, P.; Kunze, K. N.#; Park, H.-J.; Yang, D.-S.; Lewis, J. C.* Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation. J. Am. Chem. Soc. 2018, 140, 546-549.

TOC Image

Category: Biocatalysis

Publication Link


47
Evolving Artificial Metalloenzyme Selectivity via Random Mutagenesis

Yang, H.; Swartz, A. M.; Srivastava, P.; Ellis-Guardiola, K.; Park, H. J.; Upp, D.; Belsare, K.; Lee, G.; Zhang, C.; Moellering, R. E.; Lewis, J. C.* Evolving Artificial Metalloenzyme Selectivity via Random Mutagenesis. Nat. Chem. 2018, 10, 318-324.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


46
Preparation of Artificial Metalloenzymes. In Artificial Metalloenzymes and MetalloDNAzymes in Catalysis. From Design to Applications

Ellis-Guardiola, K.; Lewis, J. C.* Preparation of Artificial Metalloenzymes. In Artificial Metalloenzymes and MetalloDNAzymes in Catalysis. From Design to Applications; Diégues, M.; Bäckvall, J.-E.; Pàmies, O., Eds.; 2018, Wiley-VCH.

Category: Artificial Metalloenzymes

Publication Link


45
Understanding and Improving the Activity of Flavin Dependent Halogenases via Random and Targeted Mutagenesis

Andorfer, M. C.; Lewis, J. C.* Understanding and Improving the Activity of Flavin Dependent Halogenases via Random and Targeted Mutagenesis. Ann. Rev. Biochem. 2018, 87, 159-185.

Category: Biocatalysis

Publication Link


44
(PNP)Rh complexes: Improved C-H Activation, Expanded Reaction Scope, and Catalytic Direct Arylation

Gair, J. J.; Qiu, Y.#; Chan, N.; Filatov, A. S.; Lewis, J. C.* (PNP)Rh complexes: Improved C-H Activation, Expanded Reaction Scope, and Catalytic Direct Arylation. Organometallics, 2017, 36, 4699-4706.

TOC Image

Category: Organometallics

Publication Link


43
Artificial Metalloenzymes: Reaction Scope and Optimization Strategies

Kohler, V.; Schwizer, F.; Okamoto, Y.; Lebrun, V.; Reuter, R.; Pellizzoni, M. M.; Heinisch, T.; Gu, Yifan; Lewis, J. C.*; Ward, T. R.* Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews, 2017, 118, 142-231.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


42
Aromatic Halogenation Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes

Andorfer, M. C.; Belsare, K. D.; Girlich, A. M.#; Lewis, J. C.* Aromatic Halogenation Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes.  ChemBioChem, 2017, 18, 2099-2103.

TOC Image

Category: Biocatalysis

Publication Link


41
Mono-N-Protected Amino Acid Ligands Stabilize Dimeric Palladium(II) Complexes of Importance to C-H Functionalization

Gair, J. J.; Haines, B. E.; Filatov, A. S.; Musaev, D. G.*; Lewis, J. C.* Mono-N-Protected Amino Acid Ligands Stabilize Dimeric Palladium(II) Complexes of Importance to C-H Functionalization. Chemical Science, 2017, 8, 5746-5756.

TOC Image

Category: Organometallics

Publication Link


40
Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling

Andorfer, M. C.; Grob, J. E.; Hajdin, C. E.; Chael, J. R.#; Siuti, P.; Lilly, J.; Tan, K. L.*; Lewis, J. C.* Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling. ACS Catalysis. 2017, 7, 1897-1904.

TOC Image

Category: Biocatalysis

Publication Link


39
A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering

Belsare, K.; Andorfer, M. C.; Cardenas, F.#; Chael, J. R.#; Park, H. J.; Lewis, J. C.* A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering. ACS Synth. Biol. 2017, 6, 416-420.

TOC Image

Category: Biocatalysis

Publication Link


38
Selective C-H Bond Functionalization Using Repurposed or Artificial Metalloenzymes

Upp, D. M.; Lewis, J. C.* Selective C-H Bond Functionalization Using Repurposed or Artificial Metalloenzymes. Curr. Opin. Chem. Biol. 2017, 37, 48-55.

Category: Artificial Metalloenzymes

Publication Link


37
Engineering Flavin-Dependent Halogenases

Payne, J. T.; Andorfer, M. C.; Lewis, J. C.* Engineering Flavin-Dependent Halogenases. Meth. Enz. 2016, 575, 93-126.

Category: Biocatalysis

Publication Link


36
Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds

Andorfer, M. C.; Park, H. J.; Vergara-Coll, J.#; Lewis, J. C.* Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds. Chem. Sci. 2016, 7, 3720-3729.

TOC Image

Category: Biocatalysis

Publication Link


35
Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization

Durak, L. J.; Payne, J. T.; Lewis, J. C.* Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization. ACS Catal. 2016, 6, 1451-1454.

TOC Image

Category: Biocatalysis

Publication Link


34
Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation

Srivastava, P.; Yang, H.; Ellis-Guardiola, K.; Lewis, J. C.* Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation. Nat. Commun. 2015, 6, 7789.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


33
Preparation, Characterization, and Reactivity of a Photocatalytic Artificial Enzyme

Gu, Y.; Ellis-Guardiola, K.; Srivastava, P.; Lewis, J. C.* Preparation, Characterization, and Reactivity of a Photocatalytic Artificial Enzyme. ChemBioChem. 2015.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


32
Directed Evolution of RebH for Site Selective Halogenation of Large, Biologically Active Molecules

Payne, J. T.; Poor, C. B.; Lewis, J. C.* Directed Evolution of RebH for Site Selective Halogenation of Large, Biologically Active Molecules. Angew. Chem. Int. Ed. 2015, 54, 4226.

TOC Image

See a Synfacts comment here.

Category: Biocatalysis

Publication Link


31
Metallopeptide Catalysts and Artificial Metalloenzymes Containing Unnatural Amino Acids

Lewis, J. C.* Metallopeptide Catalysts and Artificial Metalloenzymes Containing Unnatural Amino Acids. Curr. Opin. Chem. Biol. 2015, 25, 27-35.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


30
Improving the Stability of the FAD-Dependent Halogenase RebH Using Directed Evolution

Poor, C. B.; Andorfer, M. C.; Lewis, J. C.* Improving the Stability of the FAD-Dependent Halogenase RebH Using Directed Evolution.  ChemBioChem. 2014, 15, 1286-1289.

TOC Image

Category: Biocatalysis

Publication Link


29
Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation

Zhang, C.; Srivastava, P.; Ellis-Guardiola, K.; Lewis, J. C.* Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation. Tetrahedron 2014, 70, 4245-4249.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


28
Upgrading Nature’s Tools: Expression Enhancement and Preparative Utility of the Halogenase RebH

Payne, J. T.; Lewis, J. C.* Upgrading Nature’s Tools: Expression Enhancement and Preparative Utility of the Halogenase RebH. Synlett 2014, 25, 1345-1349.

Category: Biocatalysis

Publication Link


27
Ir-Promoted, Pd-catalyzed Direct Arylation of Unactivated Arenes

Durak, L. J. and Lewis, J. C.* Ir-Promoted, Pd-catalyzed Direct Arylation of Unactivated Arenes. Organometallics, 2014, 33, 620-623.

TOC ImageTOC Image

Category: Organometallics

Publication Link


26
A General Method for Artificial Metalloenzyme Formation via Strain-Promoted Azide-Alkyne Cycloaddition

Yang, H.; Srivastava, P.; Zhang, C.; Lewis, J. C.* A General Method for Artificial Metalloenzyme Formation via Strain-Promoted Azide-Alkyne Cycloaddition. ChemBioChem. 2014, 15, 223-227.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


25
Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis

Lewis, J. C.* Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis. ACS Catal. (invited review) 2013, 3, 2954-2975.

TOC Image

Category: Artificial Metalloenzymes

Publication Link


24
Transmetallation of Alkyl and Hydride Ligands From Cp*(PMe3)IrR1R2 to (cod)Pt/PdR3X

Durak, L. and Lewis, J. C.* Transmetallation of Alkyl and Hydride Ligands From Cp*(PMe3)IrR1R2 to (cod)Pt/PdR3X. Organometallics. 2013, 32, 3153-3156.

TOC Image

Category: Organometallics

Publication Link


23
Regioselective Arene Halogenation Using the FAD-Dependent Halogenase RebH

Payne, J. T.; Andorfer, M. C.; Lewis, J. C. Regioselective Arene Halogenation Using the FAD-Dependent Halogenase RebH. Angew. Chemie. Int. Ed. 2013, 125, 5379-5382.

TOC Image

Category: Biocatalysis

Publication Link


22
Synthesis and Catalytic Activity of Amino Acids and Metallopeptides with Catalytically Active Metallocyclic Side Chains

Zhong, Z.; Yang, H.; Zhang, C.; Lewis, J. C. Synthesis and Catalytic Activity of Amino Acids and Metallopeptides with Catalytically Active Metallocyclic Side Chains. Organometallics, 2012, 31, 7328-7331.

TOC Image

Category: Organometallics

Publication Link


21
Enantioselective Intramolecular C-H amination Catalysed by Engineered Cytochrome P450 Enzymes in vitro and in vivo

McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.#; Arnold, F. H.* Enantioselective Intramolecular C-H amination Catalysed by Engineered Cytochrome P450 Enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 2013, 52, 9309 –9312.

Category: Biocatalysis

Publication Link


20
Synthetic Biology Approaches for Organic Synthesis

“Synthetic Biology Approaches for Organic Synthesis,” P. S. Coelho, J. C. Lewis, F. H. Arnold.* Article 00931 in Comprehensive Organic Synthesis II. G. Molander and P. Knochel (Eds.), Elsevier Ltd: Oxford. 2014, 390-420.

Category: Biocatalysis

Publication Link


19
Enzymatic Functionalization of Carbon-Hydrogen Bonds

Lewis, J. C.; Coelho, P. S.; Arnold, F. H.* Enzymatic Functionalization of Carbon-Hydrogen Bonds. Chem. Soc. Rev. 2011, 40, 2003-2021.

Category: Biocatalysis

Publication Link


18
Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates

Lewis, J. C.; Mantovani, S. M.; Fu, Y.; Snow, C. D.; Komor, R. S.; Wong, C. H.; Arnold, F. H.* Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates. ChemBioChem. 2010, 11, 2502-2505.

Category: Biocatalysis

Publication Link


17
Chemoenzymatic Elaboration of Monosaccharides Using Engineered Cytochrome P450 BM-3 Demethylases

Lewis, J. C.; Bastian, S.; Bennett, C. S.; Fu, Y.; Mitsuda, Y.; Chen, M. M.; Greenberg, W. A.; Wong, C.-H.; Arnold, F. H.* Chemoenzymatic Elaboration of Monosaccharides Using Engineered Cytochrome P450 BM-3 Demethylases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16550-16555.

Category: Biocatalysis

Publication Link


16
Catalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM-3

Lewis, J. C.; Arnold, F. H.* Catalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM-3. Chimia 2009, 63, 309-312.

Category: Biocatalysis

Publication Link


15
Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

Lewis, J. C.; Berman, A. M. Bergman, R. G.*; Ellman, J. A.* Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight. J. Am. Chem. Soc. 2008, 130, 2493-2500.

Category: Organometallics

Publication Link


14
Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines

Berman, A. M.; Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines. J. Am. Chem. Soc. 2008, 130, 14926-14927.

Category: Organometallics

Publication Link


13
Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation. Acc. Chem. Res. 2008, 41, 1013-1025.

Category: Organometallics

Publication Link


12
One-Pot Microwave-Promoted Synthesis of Nitriles from Aldehydes via tert-Butanesulfinyl Imines

Tanuwidjaja, J.#; Peltier, H. M.; Lewis, J. C.; Schenkel, L. B.; Ellman, J. A.* One-Pot Microwave-Promoted Synthesis of Nitriles from Aldehydes via tert-Butanesulfinyl Imines. Synthesis 2007, 3385-3389.

Category: Other

Publication Link


11
Rh(I)-Catalyzed Alkylation of Quinolines and Pyridines via C-H Activation

Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Rh(I)-Catalyzed Alkylation of Quinolines and Pyridines via C-H Activation. J. Am. Chem. Soc. 2007, 129, 5332.

Category: Organometallics

Publication Link


10
Microwave-Promoted Rhodium-Catalyzed Arylation of Heterocycles via C-H Bond Activation

Lewis, J. C.; Wu, J. Y.#; Bergman, R. G.*; Ellman, J. A.* Microwave-Promoted Rhodium-Catalyzed Arylation of Heterocycles via C-H Bond Activation. Angew. Chem. Int. Ed. 2006, 118, 1619-1621.

Category: Organometallics

Publication Link


9
Oldfield, E. NMR Shifts, Orbitals, and M...H-X Bonding in d8 Square Planar Metal Complexes

Zhang, Y.; Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.*; Oldfield, E. NMR Shifts, Orbitals, and M...H-X Bonding in d8 Square Planar Metal Complexes. Organometallics 2006, 25, 3515-3519.

Category: Organometallics

Publication Link


8
Experimental and Computational Studies on the Mechanism of N-Heterocycle C-H Activation by Rh(I)

Wiedemann, S. H.; Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Experimental and Computational Studies on the Mechanism of N-Heterocycle C-H Activation by Rh(I). J. Am. Chem. Soc. 2006, 128, 2452-2462.

Category: Organometallics

Publication Link


7
Preagostic R-H Interactions and C-H Bond Functionalization: A Combined Experimental and Theoretical Investigation of Rh(I) Phosphinite Complexes

Lewis, J. C.; Wu, J. Y.#; Ellman, J. A.*; Bergman, R. G.* Preagostic R-H Interactions and C-H Bond Functionalization: A Combined Experimental and Theoretical Investigation of Rh(I) Phosphinite Complexes. Organometallics 2005, 24, 5737-5746.

Category: Organometallics

Publication Link


6
Arylation of Heterocycles via Rhodium-catalyzed C-H Bond Functionalization

Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.*; Ellman, J. A.* Arylation of Heterocycles via Rhodium-catalyzed C-H Bond Functionalization. Org. Lett. 2004, 6, 35-38.

Category: Organometallics

Publication Link


5
Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 1

Souers, A. J.; Wodka, D.; Gao, J.; Lewis, J. C.#; Vasudevan, A.; Gentles, R.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry, D.; Hernandez, L. E.; Marsh, K. C.; Collins, C. A.; Kym, P. R. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 1. Bioorg. Med. Chem. Lett. 2004, 14, 4873-4877.

Category: Chemical Biology

Publication Link


4
Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 3

Souers, A. J.; Wodka, D.; Gao, J.; Lewis, J. C.#; Vasudevan, A.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry, D.; Hernandez, L. E.; Marsh, K. C.; Collins, C. A.; Kym, P. R. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 3. Bioorg. Med. Chem. Lett. 2004, 14, 4883-4886.

Category: Chemical Biology

Publication Link


3
Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo

Ghosh, S.; Chan, J. M. W.#; Lea, C. R.; Meints, G. A.; Lewis, J. C.#; Tovian, Z. S.#; Flessner, R. M.; Loftus, T. C.#; Bruchhaus, I.; Kendrick, H.; Croft, S. L.; Kemp, R. G.; Kobayashi, S.; Nozaki, T.; Oldfield, E.* Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo. J. Med. Chem. 2004, 47, 175-187.

Category: Chemical Biology

Publication Link


2
A 3D-QSAR/CoMFA Study of the Activity of Bisphosphonates Against Trypanosoma brucei rhodesiense: Farnesyl Pyrophosphate Synthase as a Drug Target and Analysis of Drug Toxicity

Martin, M. B.; Sanders, J. M.; Kendrick, H.; de Luca-Fradley, K.; Yardley, V.; Lewis, J. C.#; Grimley, J. S.#; van Brussel, E. M.#; Olsen, J. R.#; Meints, G. A.; Burzyska, A.; Kararski, P.; Croft, S. L.; Oldfield, E.* A 3D-QSAR/CoMFA Study of the Activity of Bisphosphonates Against Trypanosoma brucei rhodesiense: Farnesyl Pyrophosphate Synthase as a Drug Target and Analysis of Drug Toxicity. J. Med. Chem. 2002, 45, 2904-2914.

Category: Chemical Biology

Publication Link


1
Bisphosphonates Inhibit the Growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A Potential Route to Chemotherapy

Martin, M. B.; Grimley, J. S.#; Lewis, J. C.#; Heath, H. T. III; Bailey, B. N.; Kendrick, H.; Yardley, V.; Caldera, A.; Lira, R.; Urbina, J. A.; Moreno, S. N. J.; Docampo, R.; Croft, S.; Oldfield, E.* Bisphosphonates Inhibit the Growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A Potential Route to Chemotherapy. J. Med. Chem. 2001, 44, 909-916.

Category: Chemical Biology

Publication Link


Patents

3    Coelho, Pedro, S.; Brustad, Eric M.; Arnold, Frances H.; Wang, Z.; Lewis, Jared C. In vivo and in vitro olefin cyclopropanation catalyzed by engineered and chimeric heme enzyme.” PCT Int. Appl. WO2014058744, 2014.

2    Arnold, F. H.; Wong, C.-H.; Mitsuda, Y.; Chen, M. M.; Bennett, C. S.; Greenberg, W. A.; Lewis, J. C.; Bastian, S. Engineered Bacterial Cytochrome P450 Variants for Preparation of Selectively Protected Carbohydrates. Patent No. US 20090124515, 2009.

1    Collins, C. A.; Gao, J.; Kym, P. R.; Lewis, J. C.; Souers, A. J.; Vasudevan, A.; Wodka, D. 2-Aminoquinolones as Melanin Concentrating Hormone Receptor Antagonists. Patent No. WO 2003105850, 2003.