*corresponding author #undergraduate researcher
77 Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis
Lewis, J. C.* Identifying and Engineering Flavin-Dependent Halogenases for Selective Biocatalysis, Acc. Chem. Res. 2024, accepted
You can download the final peer-reviewed manuscript at ChemRxiv.Category: Biocatalysis
76 Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases
Jiang, Y.; Kim, A.; Olive, C.; Lewis, J. C.* Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases. Angew. Chem. Int. Ed., accepted
Original preprint available on ChemRxiv.Category: Biocatalysis
75 Non-Native Intramolecular Radical Cyclization Catalyzed by a B12-Dependent Enzyme
Li, J.; Kumar, A.; Lewis, J. C.* Non-Native Intramolecular Radical Cyclization Catalyzed by a B12-Dependent Enzyme. Angew. Chem. Int. Ed., 2023, e202312893.
Original preprint available on ChemRxiv.Category: Biocatalysis
74 Non-Native Site-Selective Enzyme Catalysis
Mondal, D.; Snodgrass, H. M.; Gomez, C. A.; Lewis, J. C.* Chem. Rev. 2023, 123, 10381-10431.
See the original preprint available on ChemRxiv.
Category: Artificial Metalloenzymes | Biocatalysis
73 Iridium(III) Polypyridine Artificial Metalloenzymes with Tunable Photophysical Properties: a New Platform for Visible Light Photocatalysis in Aqueous Solution
Liu, B.; Zubi, Y. S.; Lewis, J. C.* Dalton, 2023, 52, 5034-5038.
See the original preprint on ChemRxiv.
Category: Artificial Metalloenzymes
72 Asymmetric Catalysis by Flavin Dependent Halogenases
Jiang, Y.; Lewis, J. C.* Chirality, 2023, 1-9.
See the original manuscript on ChemRxiv.
Category: Biocatalysis
71 First and Second Sphere Interactions Accelerate Non-Native N-Alkylation Catalysis by the Thermostable, Methanol-Tolerant B12-Dependent Enzyme MtaC.
Kumar, A.; Yang, X., Li, J.; Lewis, J. C.* ChemComm, 2023, 59, 4798-4801.
See the original preprint on ChemRxiv.
Category: Biocatalysis | Organometallics
70 Directed Evolution of a Fe(II)- and alpha-Ketoglutarate-Dependent Dioxygenase for Site-Selective Azidation of Unactivated Aliphatic C-H Bonds
Gomez, C.; Mondal, D.; Du, Q.; Chan, N.; Lewis, J. C.* Angew. Chem. Int. Ed. 2023, e202301370.
See the original manuscript on ChemRxiv.
Category: Biocatalysis
69 The Single Component Flavin Reductase/Flavin Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins
Jiang, Y.; Snodgrass, H. M.; Zubi, Y. S.; Roof, C. V.; Guan, Y.; Mondal, D.; Honeycutt, N. H.#; Lee, J.; Lewis, R. D.; Martinez, C. A.; Lewis, J. C.* Angew. Chem. Int. Ed. 2022, 61, e202214610.
See the original manuscript on ChemRxiv.
Category: Biocatalysis
68 Expanding the Reactivity of Flavin Dependent Halogenases Toward Olefins via Enantioselective Intramolecular Haloetherification and Chemoenzymatic Oxidative Rearrangements
Jiang, Y.; Mondal, D.; Lewis, J. C.* ACS Catalysis, 2022, 12, 13501-13505. Check out the original manuscript on ChemRxiv.
Category: Biocatalysis
67 Non-native Anionic Ligand Binding and Reactivity in Engineered Variants of the Fe(II)- and α-Ketoglutarate-Dependent Oxygenase, SadA
Chan, N. H.; Gomez, C.; Vennelakanti, V.; Du, Q.; Kulik, H. J.*; Lewis, J. C.* Inorg. Chem. 2022, 61, 14477-14485. Check out the original manuscript on ChemRxiv.
Category: Biocatalysis
66 Cobalamin-Mediated Electrocatalytic Reduction of Ethyl Chloroacetate in Dimethylformamide
Gerroll, B. H. R.; Lewis, J. C.; Baker, L. A.* J. Electrochem. Soc. 2022, 169, 055501.
Category: Organometallics
65 Directed Evolution of Flavin-Dependent Halogenases for Atroposelective Halogenation of 3-Aryl-4(3H)-quinazolinones via Kinetic or Dynamic Kinetic Resolution
Snodgrass, H. M.; Mondal, D.; Lewis, J. C.* J. Am. Chem. Soc. 2022, 144, 16676-16682.. See the original manuscript on ChemRxiv.
Category: Biocatalysis
64 Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity
Andorfer, M. C.; Evans, D.; Yang, S. He, C. Q.; Girlich, A. M.#; Vergara-Coll, J.#; Sukumar, N.; Houk, K. N.*; Lewis, J. C.* Chem. Catal. 2022, 2, 2658-2674. Check out the original manuscript on ChemRxiv.
Category: Biocatalysis
63 Metal-Responsive Regulation of Enzyme Catalysis Using Genetically Encoded Chemical Switches
Zubi, Y. S.; Seki, K.; Li, Y.; Hunt, A.; Liu, B.; Roux, B.*, Jewett, M. C.*, Lewis, J. C.* Nat. Commun. 2022, 13, 1864. Preprint available on ChemRxiv. See peer review here.
Category: Artificial Metalloenzymes | Biocatalysis | Chemical Biology
62 Controlling the Optical and Catalytic Properties of Artificial Metalloenzyme Photocatalysts Using Chemogenetic Engineering
Zubi, Y. S.; Liu, B.; Gu, Y.; Sahoo, D.; Lewis, J. C.* Chem. Sci. 2022, 13, 1459-1468. Preprint available on ChemRxiv.
Category: Artificial Metalloenzymes
61 Controlling Non-Native B12 Reactivity and Catalysis in the Transcription Factor CarH
Yang, X.; Gerroll, B. H. R.; Jiang, Y.; Kumar, A.; Zubi, Y. S.; Baker, L. A.; Lewis, J. C.* ACS Catal. 2022, 12, 935-942. Preprint available on ChemRxiv.
Category: Biocatalysis | Organometallics
60 Phage-Assisted Continuous Evolution and Selection of Enzymes for Chemical Synthesis
Jones, K. A.; Snodgrass, H. M.; Belsare, K.; Dickinson, B. C.*, Lewis, J. C.* ACS Central Science, 2021, 7, 1581-1590. Preprint available on ChemRxiv.
Category: Biocatalysis | Chemical Biology
59 Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions
Upp, D. M.; Huang, R; Li, Y.; Bultman, M. J.#; Roux, B.*, Lewis, J. C.* Angew. Chem. Int. Ed. 2021, 60, 2-7. You can read the original manuscript on ChemRxiv.
Category: Artificial Metalloenzymes
58 Flavin-Dependent Halogenases Catalyze Enantioselective Olefin Halocyclization.
Dibyendu Mondal, Brian F. Fisher, Yuhua Jiang, Jared C. Lewis*. Flavin-Dependent Halogenases Catalyze Enantioselective Olefin Halocyclization. Nat. Commun. 2021, 3268. You can read the original manuscript at ChemRxiv. See peer review discussion here.
Category: Biocatalysis
57 Insight into the Scope and Mechanism for Transmetallation of Hydrocarbyl Ligands on Complexes Relevant to C-H Activation
Natalie Chan, Joseph J. Gair, Michael Roy#, Yehao Qiu#, Duo-Sheng Wang, Landon J. Durak, Liwei Chen#, Alexander S. Filatov, Jared C. Lewis*. Insight into the Scope and Mechanism for Transmetallation of Hydrocarbyl Ligands on Complexes Relevant to C-H Activation. Organometallics, 2021, 40, 6-10. You can read the originally submitted manuscript at ChemRxiv.
Category: Organometallics
56 Catalytic Behavior of Mono-N-Protected Amino Acid Ligands in Ligand-Accelerated C–H Activation by Palladium(II)
Salazar, C. A.; Gair, J. J.; Flesch, K. N.; Guzei, I. A.; Lewis, J. C.; Stahl, S. S.* Catalytic Behavior of Mono-N-Protected Amino-Acid Ligands in Ligand-Accelerated C-H Activation by Palladium(II). Angew. Chem. Int. Ed. 2020, 59, 10873-10877.
Category: Organometallics
55 A High-throughput Method for Directed Evolution of NAD(P)+ dependent Dehydrogenases for the Reduction of Biomimetic Nicotinamide Analogues
Huang, R.; Chen, H.; Upp, D. M.; Lewis, J. C.; Zhang, Y.-H. P. J.* A High-throughput Method for Directed Evolution of NAD(P)+-dependent Dehydrogenases for the Reduction of Biomimetic Nicotinamide Analogues. ACS Catalysis, 2019, 9, 11709.
Category: Biocatalysis
54 Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid Accelerated Enantioselective C-H Functionalization
Gair, J. J.; Haines, B. E.; Filatov, A. S.; Musaev, D. G.*; Lewis, J. C.* Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid Accelerated Enantioselective C-H Functionalization. ACS Catalysis, 2019, 9, 11386-11397. This project originated from efforts to incorporate a Pd-MPAA catalyst into a protein scaffold to generate an ArM. Establishing the identity of such a catalyst proved far more difficult than we expected! The original manuscript, available at ChemRxiv, notes this origin story, which had to be removed during peer review.
Category: Organometallics
53 Site-Selective C-H Halogenation using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling
Category: Biocatalysis
52 Development of a Split Esterase for Protein–Protein Interaction-Dependent Small-Molecule Activation
See the original manuscript at ChemRxiv.
Category: Chemical Biology
51 Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes to Enable Protein Control of Transition Metal Catalysis
This manuscript was an invited contribution to a special issue of Accounts of Chemical Research on artificial metalloenzyme catalysis and non-native reactions catalyzed by natural metalloenzymes. Check out the rest of the excellent articles here!
Category: Artificial Metalloenzymes
50 Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer During C-H Activation by a Rhodium-Pincer Complex
Gair, J. J.; Qiu, Y.#; Khade, R. L.; Chan, N.; Filatov, A. S.; Zhang, Y.*; Lewis, J. C.* A Heterobimetallic Isolobal Transition State Analogue for Proton Transfer During C-H Activation by a Rh-Pincer Complex. Organometallics, 2019, 38, 1407.
Category: Organometallics
49 Pyrococcus furiosus Prolyl Oligopeptidase: A Dynamic Supramolecular Host for Peptidase and Dirhodium Catalysis
The studies detailed in this manuscript were originally reported on ChemRxiv. The ChemRxiv manuscript detailed how the large scale conformational dynamics outlined in the Biochemistry paper can be used to rationalize the specificity of dirhodium ArMs created from the POP scaffold for cyclopropanation over water O-H insertion. Unfortunately, we were unable to convince reviewers of the latter point, but you can still read about it on ChemRxiv here!
Category: Artificial Metalloenzymes | Biocatalysis
48 Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation
Payne, J. T.; Butkovich, P.; Kunze, K. N.#; Park, H.-J.; Yang, D.-S.; Lewis, J. C.* Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation. J. Am. Chem. Soc. 2018, 140, 546-549.
Category: Biocatalysis
47 Evolving Artificial Metalloenzyme Selectivity via Random Mutagenesis
Yang, H.; Swartz, A. M.; Srivastava, P.; Ellis-Guardiola, K.; Park, H. J.; Upp, D.; Belsare, K.; Lee, G.; Zhang, C.; Moellering, R. E.; Lewis, J. C.* Evolving Artificial Metalloenzyme Selectivity via Random Mutagenesis. Nat. Chem. 2018, 10, 318-324.
Category: Artificial Metalloenzymes
46 Preparation of Artificial Metalloenzymes. In Artificial Metalloenzymes and MetalloDNAzymes in Catalysis. From Design to Applications
Ellis-Guardiola, K.; Lewis, J. C.* Preparation of Artificial Metalloenzymes. In Artificial Metalloenzymes and MetalloDNAzymes in Catalysis. From Design to Applications; Diégues, M.; Bäckvall, J.-E.; Pàmies, O., Eds.; 2018, Wiley-VCH.
Category: Artificial Metalloenzymes
45 Understanding and Improving the Activity of Flavin Dependent Halogenases via Random and Targeted Mutagenesis
Andorfer, M. C.; Lewis, J. C.* Understanding and Improving the Activity of Flavin Dependent Halogenases via Random and Targeted Mutagenesis. Ann. Rev. Biochem. 2018, 87, 159-185.
Category: Biocatalysis
44 (PNP)Rh complexes: Improved C-H Activation, Expanded Reaction Scope, and Catalytic Direct Arylation
Gair, J. J.; Qiu, Y.#; Chan, N.; Filatov, A. S.; Lewis, J. C.* (PNP)Rh complexes: Improved C-H Activation, Expanded Reaction Scope, and Catalytic Direct Arylation. Organometallics, 2017, 36, 4699-4706.
Category: Organometallics
43 Artificial Metalloenzymes: Reaction Scope and Optimization Strategies
Kohler, V.; Schwizer, F.; Okamoto, Y.; Lebrun, V.; Reuter, R.; Pellizzoni, M. M.; Heinisch, T.; Gu, Yifan; Lewis, J. C.*; Ward, T. R.* Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chemical Reviews, 2017, 118, 142-231.
Category: Artificial Metalloenzymes
42 Aromatic Halogenation Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes
Andorfer, M. C.; Belsare, K. D.; Girlich, A. M.#; Lewis, J. C.* Aromatic Halogenation Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes. ChemBioChem, 2017, 18, 2099-2103.
Category: Biocatalysis
41 Mono-N-Protected Amino Acid Ligands Stabilize Dimeric Palladium(II) Complexes of Importance to C-H Functionalization
Gair, J. J.; Haines, B. E.; Filatov, A. S.; Musaev, D. G.*; Lewis, J. C.* Mono-N-Protected Amino Acid Ligands Stabilize Dimeric Palladium(II) Complexes of Importance to C-H Functionalization. Chemical Science, 2017, 8, 5746-5756.
Category: Organometallics
40 Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling
Andorfer, M. C.; Grob, J. E.; Hajdin, C. E.; Chael, J. R.#; Siuti, P.; Lilly, J.; Tan, K. L.*; Lewis, J. C.* Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling. ACS Catalysis. 2017, 7, 1897-1904.
Category: Biocatalysis
39 A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering
Belsare, K.; Andorfer, M. C.; Cardenas, F.#; Chael, J. R.#; Park, H. J.; Lewis, J. C.* A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering. ACS Synth. Biol. 2017, 6, 416-420.
Category: Biocatalysis
38 Selective C-H Bond Functionalization Using Repurposed or Artificial Metalloenzymes
Upp, D. M.; Lewis, J. C.* Selective C-H Bond Functionalization Using Repurposed or Artificial Metalloenzymes. Curr. Opin. Chem. Biol. 2017, 37, 48-55.
Category: Artificial Metalloenzymes
37 Engineering Flavin-Dependent Halogenases
Payne, J. T.; Andorfer, M. C.; Lewis, J. C.* Engineering Flavin-Dependent Halogenases. Meth. Enz. 2016, 575, 93-126.
Category: Biocatalysis
36 Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds
Andorfer, M. C.; Park, H. J.; Vergara-Coll, J.#; Lewis, J. C.* Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds. Chem. Sci. 2016, 7, 3720-3729.
Category: Biocatalysis
35 Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization
Durak, L. J.; Payne, J. T.; Lewis, J. C.* Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization. ACS Catal. 2016, 6, 1451-1454.
Category: Biocatalysis
34 Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation
Srivastava, P.; Yang, H.; Ellis-Guardiola, K.; Lewis, J. C.* Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation. Nat. Commun. 2015, 6, 7789.
Category: Artificial Metalloenzymes
33 Preparation, Characterization, and Reactivity of a Photocatalytic Artificial Enzyme
Gu, Y.; Ellis-Guardiola, K.; Srivastava, P.; Lewis, J. C.* Preparation, Characterization, and Reactivity of a Photocatalytic Artificial Enzyme. ChemBioChem. 2015.
Category: Artificial Metalloenzymes
32 Directed Evolution of RebH for Site Selective Halogenation of Large, Biologically Active Molecules
Payne, J. T.; Poor, C. B.; Lewis, J. C.* Directed Evolution of RebH for Site Selective Halogenation of Large, Biologically Active Molecules. Angew. Chem. Int. Ed. 2015, 54, 4226.
See a Synfacts comment here.Category: Biocatalysis
31 Metallopeptide Catalysts and Artificial Metalloenzymes Containing Unnatural Amino Acids
Lewis, J. C.* Metallopeptide Catalysts and Artificial Metalloenzymes Containing Unnatural Amino Acids. Curr. Opin. Chem. Biol. 2015, 25, 27-35.
Category: Artificial Metalloenzymes
30 Improving the Stability of the FAD-Dependent Halogenase RebH Using Directed Evolution
Poor, C. B.; Andorfer, M. C.; Lewis, J. C.* Improving the Stability of the FAD-Dependent Halogenase RebH Using Directed Evolution. ChemBioChem. 2014, 15, 1286-1289.
Category: Biocatalysis
29 Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation
Zhang, C.; Srivastava, P.; Ellis-Guardiola, K.; Lewis, J. C.* Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation. Tetrahedron 2014, 70, 4245-4249.
Category: Artificial Metalloenzymes
28 Upgrading Nature’s Tools: Expression Enhancement and Preparative Utility of the Halogenase RebH
Payne, J. T.; Lewis, J. C.* Upgrading Nature’s Tools: Expression Enhancement and Preparative Utility of the Halogenase RebH. Synlett 2014, 25, 1345-1349.
Category: Biocatalysis
27 Ir-Promoted, Pd-catalyzed Direct Arylation of Unactivated Arenes
Durak, L. J. and Lewis, J. C.* Ir-Promoted, Pd-catalyzed Direct Arylation of Unactivated Arenes. Organometallics, 2014, 33, 620-623.
Category: Organometallics
26 A General Method for Artificial Metalloenzyme Formation via Strain-Promoted Azide-Alkyne Cycloaddition
Yang, H.; Srivastava, P.; Zhang, C.; Lewis, J. C.* A General Method for Artificial Metalloenzyme Formation via Strain-Promoted Azide-Alkyne Cycloaddition. ChemBioChem. 2014, 15, 223-227.
Category: Artificial Metalloenzymes
25 Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis
Lewis, J. C.* Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis. ACS Catal. (invited review) 2013, 3, 2954-2975.
Category: Artificial Metalloenzymes
24 Transmetallation of Alkyl and Hydride Ligands From Cp*(PMe3)IrR1R2 to (cod)Pt/PdR3X
Durak, L. and Lewis, J. C.* Transmetallation of Alkyl and Hydride Ligands From Cp*(PMe3)IrR1R2 to (cod)Pt/PdR3X. Organometallics. 2013, 32, 3153-3156.
Category: Organometallics
23 Regioselective Arene Halogenation Using the FAD-Dependent Halogenase RebH
Payne, J. T.; Andorfer, M. C.; Lewis, J. C. Regioselective Arene Halogenation Using the FAD-Dependent Halogenase RebH. Angew. Chemie. Int. Ed. 2013, 125, 5379-5382.
Category: Biocatalysis
22 Synthesis and Catalytic Activity of Amino Acids and Metallopeptides with Catalytically Active Metallocyclic Side Chains
Zhong, Z.; Yang, H.; Zhang, C.; Lewis, J. C. Synthesis and Catalytic Activity of Amino Acids and Metallopeptides with Catalytically Active Metallocyclic Side Chains. Organometallics, 2012, 31, 7328-7331.
Category: Organometallics
21 Enantioselective Intramolecular C-H amination Catalysed by Engineered Cytochrome P450 Enzymes in vitro and in vivo
McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.#; Arnold, F. H.* Enantioselective Intramolecular C-H amination Catalysed by Engineered Cytochrome P450 Enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 2013, 52, 9309 –9312.
Category: Biocatalysis
20 Synthetic Biology Approaches for Organic Synthesis
“Synthetic Biology Approaches for Organic Synthesis,” P. S. Coelho, J. C. Lewis, F. H. Arnold.* Article 00931 in Comprehensive Organic Synthesis II. G. Molander and P. Knochel (Eds.), Elsevier Ltd: Oxford. 2014, 390-420.
Category: Biocatalysis
19 Enzymatic Functionalization of Carbon-Hydrogen Bonds
Lewis, J. C.; Coelho, P. S.; Arnold, F. H.* Enzymatic Functionalization of Carbon-Hydrogen Bonds. Chem. Soc. Rev. 2011, 40, 2003-2021.
Category: Biocatalysis
18 Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates
Lewis, J. C.; Mantovani, S. M.; Fu, Y.; Snow, C. D.; Komor, R. S.; Wong, C. H.; Arnold, F. H.* Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates. ChemBioChem. 2010, 11, 2502-2505.
Category: Biocatalysis
17 Chemoenzymatic Elaboration of Monosaccharides Using Engineered Cytochrome P450 BM-3 Demethylases
Lewis, J. C.; Bastian, S.; Bennett, C. S.; Fu, Y.; Mitsuda, Y.; Chen, M. M.; Greenberg, W. A.; Wong, C.-H.; Arnold, F. H.* Chemoenzymatic Elaboration of Monosaccharides Using Engineered Cytochrome P450 BM-3 Demethylases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16550-16555.
Category: Biocatalysis
16 Catalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM-3
Lewis, J. C.; Arnold, F. H.* Catalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM-3. Chimia 2009, 63, 309-312.
Category: Biocatalysis
15 Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight
Lewis, J. C.; Berman, A. M. Bergman, R. G.*; Ellman, J. A.* Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight. J. Am. Chem. Soc. 2008, 130, 2493-2500.
Category: Organometallics
14 Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines
Berman, A. M.; Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines. J. Am. Chem. Soc. 2008, 130, 14926-14927.
Category: Organometallics
13 Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation
Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation. Acc. Chem. Res. 2008, 41, 1013-1025.
Category: Organometallics
12 One-Pot Microwave-Promoted Synthesis of Nitriles from Aldehydes via tert-Butanesulfinyl Imines
Tanuwidjaja, J.#; Peltier, H. M.; Lewis, J. C.; Schenkel, L. B.; Ellman, J. A.* One-Pot Microwave-Promoted Synthesis of Nitriles from Aldehydes via tert-Butanesulfinyl Imines. Synthesis 2007, 3385-3389.
Category: Other
11 Rh(I)-Catalyzed Alkylation of Quinolines and Pyridines via C-H Activation
Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Rh(I)-Catalyzed Alkylation of Quinolines and Pyridines via C-H Activation. J. Am. Chem. Soc. 2007, 129, 5332.
Category: Organometallics
10 Microwave-Promoted Rhodium-Catalyzed Arylation of Heterocycles via C-H Bond Activation
Lewis, J. C.; Wu, J. Y.#; Bergman, R. G.*; Ellman, J. A.* Microwave-Promoted Rhodium-Catalyzed Arylation of Heterocycles via C-H Bond Activation. Angew. Chem. Int. Ed. 2006, 118, 1619-1621.
Category: Organometallics
9 Oldfield, E. NMR Shifts, Orbitals, and M...H-X Bonding in d8 Square Planar Metal Complexes
Zhang, Y.; Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.*; Oldfield, E. NMR Shifts, Orbitals, and M...H-X Bonding in d8 Square Planar Metal Complexes. Organometallics 2006, 25, 3515-3519.
Category: Organometallics
8 Experimental and Computational Studies on the Mechanism of N-Heterocycle C-H Activation by Rh(I)
Wiedemann, S. H.; Lewis, J. C.; Bergman, R. G.*; Ellman, J. A.* Experimental and Computational Studies on the Mechanism of N-Heterocycle C-H Activation by Rh(I). J. Am. Chem. Soc. 2006, 128, 2452-2462.
Category: Organometallics
7 Preagostic R-H Interactions and C-H Bond Functionalization: A Combined Experimental and Theoretical Investigation of Rh(I) Phosphinite Complexes
Lewis, J. C.; Wu, J. Y.#; Ellman, J. A.*; Bergman, R. G.* Preagostic R-H Interactions and C-H Bond Functionalization: A Combined Experimental and Theoretical Investigation of Rh(I) Phosphinite Complexes. Organometallics 2005, 24, 5737-5746.
Category: Organometallics
6 Arylation of Heterocycles via Rhodium-catalyzed C-H Bond Functionalization
Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.*; Ellman, J. A.* Arylation of Heterocycles via Rhodium-catalyzed C-H Bond Functionalization. Org. Lett. 2004, 6, 35-38.
Category: Organometallics
5 Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 1
Souers, A. J.; Wodka, D.; Gao, J.; Lewis, J. C.#; Vasudevan, A.; Gentles, R.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry, D.; Hernandez, L. E.; Marsh, K. C.; Collins, C. A.; Kym, P. R. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 1. Bioorg. Med. Chem. Lett. 2004, 14, 4873-4877.
Category: Chemical Biology
4 Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 3
Souers, A. J.; Wodka, D.; Gao, J.; Lewis, J. C.#; Vasudevan, A.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry, D.; Hernandez, L. E.; Marsh, K. C.; Collins, C. A.; Kym, P. R. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 3. Bioorg. Med. Chem. Lett. 2004, 14, 4883-4886.
Category: Chemical Biology
3 Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo
Ghosh, S.; Chan, J. M. W.#; Lea, C. R.; Meints, G. A.; Lewis, J. C.#; Tovian, Z. S.#; Flessner, R. M.; Loftus, T. C.#; Bruchhaus, I.; Kendrick, H.; Croft, S. L.; Kemp, R. G.; Kobayashi, S.; Nozaki, T.; Oldfield, E.* Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo. J. Med. Chem. 2004, 47, 175-187.
Category: Chemical Biology
2 A 3D-QSAR/CoMFA Study of the Activity of Bisphosphonates Against Trypanosoma brucei rhodesiense: Farnesyl Pyrophosphate Synthase as a Drug Target and Analysis of Drug Toxicity
Martin, M. B.; Sanders, J. M.; Kendrick, H.; de Luca-Fradley, K.; Yardley, V.; Lewis, J. C.#; Grimley, J. S.#; van Brussel, E. M.#; Olsen, J. R.#; Meints, G. A.; Burzyska, A.; Kararski, P.; Croft, S. L.; Oldfield, E.* A 3D-QSAR/CoMFA Study of the Activity of Bisphosphonates Against Trypanosoma brucei rhodesiense: Farnesyl Pyrophosphate Synthase as a Drug Target and Analysis of Drug Toxicity. J. Med. Chem. 2002, 45, 2904-2914.
Category: Chemical Biology
1 Bisphosphonates Inhibit the Growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A Potential Route to Chemotherapy
Martin, M. B.; Grimley, J. S.#; Lewis, J. C.#; Heath, H. T. III; Bailey, B. N.; Kendrick, H.; Yardley, V.; Caldera, A.; Lira, R.; Urbina, J. A.; Moreno, S. N. J.; Docampo, R.; Croft, S.; Oldfield, E.* Bisphosphonates Inhibit the Growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A Potential Route to Chemotherapy. J. Med. Chem. 2001, 44, 909-916.
Category: Chemical Biology
Patents
3 Coelho, Pedro, S.; Brustad, Eric M.; Arnold, Frances H.; Wang, Z.; Lewis, Jared C. In vivo and in vitro olefin cyclopropanation catalyzed by engineered and chimeric heme enzyme.” PCT Int. Appl. WO2014058744, 2014.